Code No: 113AW JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015 SIGNALS AND SYSTEMS (Common to ECE, EIE, BME, ETM)

Time: 3 Hours

Max. Marks: 75

R13

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

1.a)	What is orthogonal signal space?	[2M]
b)	What are Dirichlet's conditions? State them.	[3M]
c)	What is anti-aliasing filter?	[2M]
d)	Define Hilbert transform of a signal.	[3M]
e)	What is signal bandwidth?	[2M]
f)	Write the properties of the LTI systems.	[3M]
g)	Define spectral density.	[2M]
h)	When the convolution and correlation equivalent?	[3M]
i)	What is steady state response?	[2M]
j)	What is the condition for Z – transform exist?	[3M]

PART-B

(50 Marks)

- Explain orthogonality property between two complex functions $x_1(t)$ and $x_2(t)$ for 2.a) a real variable t.
- b) State the properties of the Fourier series.

[5+5]

- OR
- Prove sinusoidal functions are orthogonal functions. 3.a)

Find the exponential Fourier series for the full wave rectified sine wave function b) given in figure. [5+5]

	4.a)		f Fourier
	b)	transform. Explain about effects of under sampling. OR	[5+5]
	5.a) b)	Find Fourier transform of $e^{-2 t } \sin(t)$. Give a continuous-time signal $x(t)$ with Nyquist rate ω_N . Determine th rate for the following continuous-time signals:	e Nyquist
		i) $y(t) = x^{2}(t)$. ii) $y(t) = x(t) \cos \omega_{0} t$.	[5+5]
	6.a)	The impulse response of a continuous-time system is expressed as: $h(t) = e^{-2t} u(t)$	
	b)	Find the frequency response of the system. Plot the frequency response. Explain ideal filters.	[5+5]
		OR	
	7.a)	What is an LTI system? Derive an expression for the transfer function	of an LTI
	b)	system. Let the system function of an LTI system be $1/(j\omega + 3)$. What is the our system y(t) for an input (0.5)' $u(t)$?	tput of the [5+5]
	8.a) b)	Bring out the relation between Correlation and Convolution. Explain the properties of Correlation function. OR	[5+5]
	9.	Obtain the convolution of the following two functions: $x(t) = 1$ for $-3 \le t \le 3$	
		h(t) = 2 $h(t) = 2$ 0 0 otherwise 0 otherwise	[10]
	10.	Prove that the signals $x(t) = e^{-at} u(t)$ and $x(t) = e^{-at} u(-t)$ have the sam differ only in ROC.	e X(s) and [10]
		OR	
	11.a)	Find the Laplace transform of $x(t) = \frac{5s+4}{s^2+2s+1} \operatorname{Re}(s) < -1$.	
	b)	State and prove integration and differentiation properties of Z – transfo	rm. [5+5]
		00000	
	10		
- 			
and the second			
	- 10 F		

Code No: 123AW JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 SIGNALS AND SYSTEMS (Common to ECE, EIE, ETM)

Time: 3 Hours

Max. Marks: 75

() = 1 4

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

	(25 Ma	Irks)
1.a)	Define even and odd components of the signal how do you get it.	[2]
b)	Sketch the unit step function and signum function bring the relation between them	ı.[3]
c)	Distinguish between Series and Transform in the Fourier representation of a signal	1.[2]
d)	Define and write the conditions of sampling theorem.	[3]
e)	Characterize a Linear Time Invariant (LTI) System.	[2]
f)	Express and derive the Relationship between Bandwidth and Rise time.	[3]
g)	Write the Convolution property of Fourier Transform.	[2]
h)	Distinguish between Cross Correlation and Auto Correlation.	[3]
i)	Write the Fundamental difference between Continuous and Discrete time signals.	[2]

Find the Z transform of x[n] = u[-n]. j)

PART-B

(50 Marks)

[3]

- Explain orthogonality property between two complex functions $f_1(t)$ and $f_2(t)$ for a 2.a) real variable t.
 - Define and derive the expression for evaluating mean square errors and its types. b)

OR

3. Find the Exponential Fourier series for the rectified Sine wave as shown in figure.

[10]

[5+5]

4. Obtain the Fourier transform of the following functions: a) Impulse Signal b) Single symmetrical Gate Pulse. [5+5]

OR

- 5.a) Write about the types of Sampling and compare the Impulse Sampling, Natural and Flat top Sampling methods.
 - Describe about the Hilbert Transform and express its properties. [5+5] b)

6.	Explain the difference between the following systems with examples.	
	a) Linear and Non-linear systems.	
	b) Causal and Non-Causal systems.	[5+5]

OR

- 7. Define Time invariant and shift invariant systems and given the system function of a LTI system be 1/jw+2 evaluate the output of the system for an input $(0.9)^t$ u (t). [10]
- 8.a) Discuss and Prove Properties of auto correlation function.
- b) Explain briefly extraction of a signal from noise by filtering. [5+5]

OR

- 9. Discuss the impact of convolution for find the system output and Use the Convolution theorem to find the spectrum of $x(t) = A \cos^2 \omega_c t$. [10]
- 10.a) State the properties of the ROC of Laplace Transform and its existances.
 - b) Find the step response of series RL circuit using Laplace transform method. [5+5] OR
- 11.a) Find the inverse Z-transform and ROC given $X(z) = \log(1/1-az^{-1})$.
 - b) Derive relationship between z and Laplace Transform and describe about the stability.

[5+5]

---00000----

R15 Code No: 123AW JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech II Year I Semester Examinations, March - 2017** SIGNALS AND SYSTEMS (Common to ECE, EIE, ETM)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a)	Determine whether a unit step signal u (t) is energy or power signal.	(25 Mą <u>p</u> ķs)
b)	Define principle of orthogonality.	[3]
c)	Define sampling Theorem.	[2]
d)	Compare Fourier series and Fourier transform.	[3]
e)	Explain with suitable example what is meant by an LTI system.	[2]
f)	Define system Bandwidth and signal Bandwidth.	[3]
g)	List the properties of Cross-correlation.	[2]
h)	Define Noise and state its properties with respect to correlation.	[3]
i)	List out the properties of Laplace transform.	[2]
j)	What is meant by region of convergence in Z Transform?	[3]

PART-B

(50 Marks)

2.a)	Derive the expression for trigonometric Fourier series coefficients.	
b)	State the dirichilet's conditions for existence of Fourier series.	[6+4]
	OR	
3.a)	Test the orthogonality of the signals sin wt cos2 wt over the interval (t_0 to t_0+T).	
b)	Find the exponential Fourier series of the signal $x(t) = 5\cos 5t+10 \sin 15t$.	[5+5]
4.a)	Find the Fourier transform of $x(t) = e^{-at} u(t)$.	
b)	State and prove the convolution property of Fourier transform.	[5+5]
0)	OR	[3+3]
5.a)	State and prove parsavels energy theorem.	
b)	b) If x (t) has Fourier transform pair X (w). Deduce the Fourier Transform of X (at- t_0).	
,		[5+5]
6.a)	Define Transfer function and state its relation with Impulse function.	
b)	Find the impulse response of a continuous time LTI system with	

H(s) = S-1/(S+1)(S+2) such that i) Re[S] > 2 ii) -1 Re[S] < 2[3+7] OR

- 7.a) Derive the relation between Bandwidth and Rise time.
- b) Determine whether the system governed by the equation y(n)= 5x(n) is linear or not Assume that x(n) represents the input to the system and y(n) represents its output. [5+5]
- 8.a) Determine the convolution of the signals $X(n) = \{2, -1, 3, 2\}$ and $h(n) = \{1, -1, 1, 1\}$
- b) What is the necessary and sufficient condition on impulse response for stability? [6+4]

OR

- 9.a) What is the overall impulse response h(n) when two system with impulse response $h_1(n)$ and $h_2(n)$ are connected in parallel and in series?
- b) State and prove properties of convolution.
- 10.a) The unilateral Laplace transform of f(t) is $\frac{1}{s^2 + s + 1}$. What is the unilateral Laplace

Transform of tf(t).

b) Find the inverse Laplace transform of the functions i) $Y(s) = 105/(5+2)^2(5+8)$ ii) $Y(s) = 105/(5+2)^3(5+8)$ [5+5]

OR

11. Find the Laplace transform of following functions:a) Exponential functionb) Unit Step functionc) Damped sine function.

[3+3+4]

[5+5]

---00000----

Code No: 123AW JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2017 SIGNALS AND SYSTEMS (Common to ECE, EIE)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

If the Fourier series coefficient of x(t) is C_n , find the Fourier series coefficient of $x^*(t)$. [2] 1.a) How do you approximate a signal using orthogonal functions? b) [3] What is Aliasing? c) [2] Determine the Fourier transform of $x(t) = e^{-at} (\cos \Omega_0 t) u(t)$. d) [3] Give the relationship between bandwidth and rise time of a signal. e) [2] The input and impulse response of continuous time systems are given below. Find the f) output of continuous time systems. $x(t) = e^{-3t} u(t)$, h(t) = u(t-1)[3] Write the relationship between autocorrelation function and power density spectrum. **g**) [2] h) State the properties of cross-correlation. [3] Define ROC of Z transform. i) [2] Let X(s)=L{x(t)}, Determine the initial value, x(0) and the final value, x(∞), for the **i**) following signal using initial value and final value theorems. X(s) = 7s + 6 / (s(3s+5))[3]

PART-B

(50 Marks)

- 2.a) Derive from the basics, how any continuous time signal x(t) can be represented as an integral of impulses.
- b) Discuss the orthogonality in complex signals.

[5+5]

OR

3. Determine the exponential form of the Fourier series representation of the signal shown below. [10]

(25 Marks)

4. State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples. [10]

OR

5.a) Determine the Hilbert transform for $x(t) = cos(\omega t)$.

b) Find the Fourier transform of
$$x(t) = \frac{e^{-|t|}}{0}$$
; for $-1 \le t \le 1$. [4+6]

- 6.a) Find the transfer function of the system governed by the following impulse response. $h(t) = u(t) + 0.5e^{-6t} u(t) + 0.2e^{-3t} \cos t u(t).$
 - b) Check whether the following system is linear, casual and time invariant or not. $d^{3}y(t)/dt^{3} + 4d^{2}y(t)/dt^{2} + 5dy(t)/dt + 2y^{2}(t) = x(t).$ [5+5] **OR**
- 7. Write short notes on the following.
 (a) Ideal filters characteristics.
 (b) Filter characteristics of a linear system. [5+5]
- 8.a) State and prove Parseval's power theorem for continuous time signals.
 - b) Perform the convolution of the following signals, by graphical method. [4+6] $x_1(t) = e^{-3t} u(t), x_2(t) = t u(t).$
 - OR
- 9.a) How do you detect the periodic signals in the presence of noise?
- b) Examine the close connection between the convolution and correlation. [8+2]
- 10.a) Compute the Laplace transform of x(t) = e^{-b |t|} for the cases of b < 0 and b > 0.
 b) Obtain the inverse Laplace transform of the function X(s) = 1 / (s²+3s+2),

ROC: -2 < Re(s) < -1.

OR

[5+5]

- 11.a) Determine the Z-transform and sketch the pole zero plot with the ROC for the following Signal: $x(n) = (0.5)^n u(n) (1/3)^n u[n]$.
 - b) Determine the inverse z-transform of $X(z) = 1 / (1-1.5z^{-1} + 0.5z^{-2})$, where ROC : |z| > 1.0 [5+5]