R13

Code No: 113AW
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, November - 2015

SIGNALS AND SYSTEMS
(Common to ECE, EIE, BME, ETM)
Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) What is orthogonal signal space?
[2M]
b) What are Dirichlet's conditions? State them.
c) What is anti-aliasing filter?
d) Define Hilbert transform of a signal,
e) What is signal bandwidth?
f) Write the properties of the LTI systems.
g) Define spectral density.
h) When the convolution and correlation equivalent?
i) What is steady state response?
j) What is the condition for Z - transform exist?

PART-B

(50 Marks)
2.a) Explain orthogonality property between two complex functions $x_{1}(t)$ and $x_{2}(t)$ for a real variable t.
b) State the properties of the Fourier series.
3.a) Prove sinusoidal functions are orthogonal functions.
b) Find the exponential Fourier series for the full wave rectified sine wave function given in figure.

4.a) State and prove the time shifting and frequency shifting properties of Fourier transform.
b) Explain about effects of under sampling.

OR

5.a) Find Fourier transform of $e^{-2|t|} \sin (t)$.
b) Give a continuous-time signal $x(t)$ with Nyquist rate ω_{N}. Determine the Nyquist rate for the following continuous-time signals:
i) $y(t)=x^{2}(t)$.
ii) $y(t)=x(t) \cos \omega_{0} t$.
6.a) The impulse response of a continuous-time system is expressed as:
$h(t)=e^{-2 t} u(t)$
Find the frequency response of the system. Plot the frequency response.
b) Explain ideal filters.

OR

7.a) What is an LTI system? Derive an expression for the transfer function of an LTI system.
b) Let the system function of an LTI system be $1 /(j \omega+3)$. What is the output of the system $y(t)$ for an input $(0.5)^{t} u(t)$?
8.a) Bring out the relation between Correlation and Convolution.
b) Explain the properties of Correlation function.

OR

9. Obtain the convolution of the following two functions:

$$
\begin{align*}
x(t)=1 & \text { for }-3 \leq t \leq 3 \\
0 & \text { otherwise. } \\
h(t)=2 & \text { for } 0 \leq t \leq 3 \\
0 & \text { otherwise } \tag{10}
\end{align*}
$$

10. Prove that the signals $x(t)=e^{-a t} u(t)$ and $x(t)=e^{-a t} u(-t)$ have the same $\mathrm{X}(s)$ and differ only in ROC.

OR

11.a) Find the Laplace transform of $x(t)=\frac{5 s+4}{s^{2}+2 s+1} \operatorname{Re}(\mathrm{~s})<-1$.
b) State and prove integration and differentiation properties of Z - transform. [5+5]

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, November/December - 2016 SIGNALS AND SYSTEMS
(Common to ECE, EIE, ETM)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.
PART- A
1.a) Define even and odd components of the signal how do you get it.
b) Sketch the unit step function and signum function bring the relation between them.[3]
c) Distinguish between Series and Transform in the Fourier representation of a signal.[2]
d) Define and write the conditions of sampling theorem.
e) Characterize a Linear Time Invariant (LTI) System.
f) Express and derive the Relationship between Bandwidth and Rise time.
g) Write the Convolution property of Fourier Transform.
h) Distinguish between Cross Correlation and Auto Correlation.
i) Write the Fundamental difference between Continuous and Discrete time signals. [2]
j) Find the Z transform of $x[n]=u[-n]$.

PART-B

(50 Marks)
2.a) Explain orthogonality property between two complex functions $f_{1}(t)$ and $f_{2}(t)$ for a real variable t .
b) Define and derive the expression for evaluating mean square errors and its types.

OR

3. Find the Exponential Fourier series for the rectified Sine wave as shown in figure.

4. Obtain the Fourier transform of the following functions:
a) Impulse Signal
b) Single symmetrical Gate Pulse.

OR

5.a) Write about the types of Sampling and compare the Impulse Sampling, Natural and Flat top Sampling methods.
b) Describe about the Hilbert Transform and express its properties.
6. Explain the difference between the following systems with examples.
a) Linear and Non-linear systems.
b) Causal and Non-Causal systems.

OR

7. Define Time invariant and shift invariant systems and given the system function of a LTI system be $1 / \mathrm{jw}+2$ evaluate the output of the system for an input $(0.9)^{t} u(t)$. [10]
8.a) Discuss and Prove Properties of auto correlation function.
b) Explain briefly extraction of a signal from noise by filtering.

OR

9. Discuss the impact of convolution for find the system output and Use the Convolution theorem to find the spectrum of $\mathrm{x}(\mathrm{t})=\mathrm{A} \operatorname{Cos}^{2} \omega_{\mathrm{c}} \mathrm{t}$.
10.a) State the properties of the ROC of Laplace Transform and its existances.
b) Find the step response of series RL circuit using Laplace transform method.

OR

11.a) Find the inverse Z-transform and ROC given $\mathrm{X}(\mathrm{z})=\log \left(1 / 1-\mathrm{az}^{-1}\right)$.
b) Derive relationship between z and Laplace Transform and describe about the stability.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, March - 2017
 SIGNALS AND SYSTEMS
 (Common to ECE, EIE, ETM)

Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART-A

1.a) Determine whether a unit step signal $u(t)$ is energy or power signal.
(25 Madks)
b) Define principle of orthogonality.
c) Define sampling Theorem.
d) Compare Fourier series and Fourier transform.
e) Explain with suitable example what is meant by an LTI system.
f) Define system Bandwidth and signal Bandwidth.
g) List the properties of Cross-correlation.
h) Define Noise and state its properties with respect to correlation.
i) List out the properties of Laplace transform.
j) What is meant by region of convergence in Z Transform?

PART-B

2.a) Derive the expression for trigonometric Fourier series coefficients.
b) State the dirichilet's conditions for existence of Fourier series.
(50 Marks)

OR

3.a) Test the orthogonality of the signals sin wt $\cos 2 \mathrm{wt}$ over the interval $\left(\mathrm{t}_{0}\right.$ to $\left.\mathrm{t}_{0}+\mathrm{T}\right)$.
b) Find the exponential Fourier series of the signal $x(t)=5 \cos 5 t+10 \sin 15 t$.
4.a) Find the Fourier transform of $x(t)=e^{-a t} u(t)$.
b) State and prove the convolution property of Fourier transform.

OR

5.a) State and prove parsavels energy theorem.
b) If $\mathrm{x}(\mathrm{t})$ has Fourier transform pair $\mathrm{X}(\mathrm{w})$. Deduce the Fourier Transform of $\mathrm{X}\left(\mathrm{at}-\mathrm{t}_{0}\right)$.
6.a) Define Transfer function and state its relation with Impulse function.
b) Find the impulse response of a continuous time LTI system with $\mathrm{H}(\mathrm{s})=\mathrm{S}-1 /(\mathrm{S}+1)(\mathrm{S}+2)$ such that i) $\operatorname{Re}[\mathrm{S}]>2$ ii) $-1 \operatorname{Re}[\mathrm{~S}]<2$
7.a) Derive the relation between Bandwidth and Rise time.
b) Determine whether the system governed by the equation $\mathrm{y}(\mathrm{n})=5 \mathrm{x}(\mathrm{n})$ is linear or not Assume that $x(n)$ represents the input to the system and $y(n)$ represents its output. [5+5]
8.a) Determine the convolution of the signals $X(n)=\{2,-1,3,2\}$ and $h(n)=\{1,-1,1,1\}$
b) What is the necessary and sufficient condition on impulse response for stability? [6+4]

OR
9.a) What is the overall impulse response $h(n)$ when two system with impulse response $h_{1}(\mathrm{n})$ and $\mathrm{h}_{2}(\mathrm{n})$ are connected in parallel and in series?
b) State and prove properties of convolution.
10.a) The unilateral Laplace transform of $f(t)$ is $\frac{1}{s^{2}+s+1}$. What is the unilateral Laplace Transform of $t f(t)$.
b) Find the inverse Laplace transform of the functions

> i) $\mathrm{Y}(\mathrm{s})=105 /(5+2)^{2}(5+8)$
> ii) $\mathrm{Y}(\mathrm{s})=105 /(5+2)^{3}(5+8)$

OR

11. Find the Laplace transform of following functions:
a) Exponential function
b) Unit Step function
c) Damped sine function.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2017

 SIGNALS AND SYSTEMS(Common to ECE, EIE)
Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) If the Fourier series coefficient of $x(t)$ is C_{n}, find the Fourier series coefficient of $x^{*}(t)$. [2]
b) How do you approximate a signal using orthogonal functions?
c) What is Aliasing?
d) Determine the Fourier transform of $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}}\left(\cos \Omega_{0} \mathrm{t}\right) \mathrm{u}(\mathrm{t})$.
e) Give the relationship between bandwidth and rise time of a signal.
f) The input and impulse response of continuous time systems are given below. Find the output of continuous time systems. $x(t)=e^{-3 t} u(t), h(t)=u(t-1)$
g) Write the relationship between autocorrelation function and power density spectrum.
h) State the properties of cross-correlation.
i) Define ROC of Z transform.
j) Let $\mathrm{X}(\mathrm{s})=\mathrm{L}\{\mathrm{x}(\mathrm{t})\}$, Determine the initial value, $\mathrm{x}(0)$ and the final value, $\mathrm{x}(\infty)$, for the following signal using initial value and final value theorems.
$X(s)=7 s+6 /(s(3 s+5))$

PART-B

2.a) Derive from the basics, how any continuous time signal $x(t)$ can be represented as an integral of impulses.
b) Discuss the orthogonality in complex signals.

OR

3. Determine the exponential form of the Fourier series representation of the signal shown below.

4. State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples.

OR
5.a) Determine the Hilbert transform for $\mathrm{x}(\mathrm{t})=\cos (\omega \mathrm{t})$.
b) Find the Fourier transform of $x(t)=\begin{array}{cc}e^{-|t|} ; & \text { for }-1 \leq t \leq 1 \\ 0 ; & \text { otherwise }\end{array}$.
6.a) Find the transfer function of the system governed by the following impulse response. $h(t)=u(t)+0.5 \mathrm{e}^{-6 t} \mathrm{u}(\mathrm{t})+0.2 \mathrm{e}^{-3 \mathrm{t}} \cos \mathrm{u}(\mathrm{t})$.
b) Check whether the following system is linear, casual and time invariant or not. $\mathrm{d}^{3} \mathrm{y}(\mathrm{t}) / \mathrm{dt}^{3}+4 \mathrm{~d}^{2} \mathrm{y}(\mathrm{t}) / \mathrm{dt}^{2}+5 \mathrm{dy}(\mathrm{t}) / \mathrm{dt}+2 \mathrm{y}^{2}(\mathrm{t})=\mathrm{x}(\mathrm{t})$.

OR
7. Write short notes on the following.
(a) Ideal filters characteristics.
(b) Filter characteristics of a linear system.
8.a) State and prove Parseval's power theorem for continuous time signals.
b) Perform the convolution of the following signals, by graphical method.

$$
\begin{equation*}
\mathrm{x}_{1}(\mathrm{t})=\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t}), \mathrm{x}_{2}(\mathrm{t})=\mathrm{t} u(\mathrm{t}) \tag{4+6}
\end{equation*}
$$

OR
9.a) How do you detect the periodic signals in the presence of noise?
b) Examine the close connection between the convolution and correlation.
10.a) Compute the Laplace transform of $x(\mathrm{t})=e^{-b^{|t|}}$ for the cases of $\mathrm{b}<0$ and $\mathrm{b}>0$.
b) Obtain the inverse Laplace transform of the function $X(s)=1 /\left(s^{2}+3 s+2\right)$,

ROC : $-2<\operatorname{Re}(s)<-1$.

OR

11.a) Determine the Z-transform and sketch the pole zero plot with the ROC for the following Signal: $x(n)=(0.5)^{n} u(n)-(1 / 3)^{n} u[n]$.
b) Determine the inverse z-transform of
$\mathrm{X}(\mathrm{z})=1 /\left(1-1.5 \mathrm{z}^{-1}+0.5 \mathrm{z}^{-2}\right)$, where ROC : $|\mathrm{z}|>1.0$

